Capacity and Performance Management - The Key to Successful Outsourcing

Part 4 – Performance and Capacity Acceptance Testing

Agenda

• Acceptance Testing
• Single Workload Tests
• Mixed Workload Tests
• Stress Tests
• Soak Tests
• Components Failure Tests
• Component Slow-down Tests

© Capacitas 2002-2006
Terminology

System integration testing

- Web server
- Application server
- Database

Component/System testing

Non-functional Acceptance Testing

- Is required when a 3rd party is engaged to:
 - Develop an application
 - Deliver a system integration
- Demonstrates that the outsourced product or system is able to meet the requirements
 - Requirements include both functional and non-functional
- Acceptance criteria need to be agreed in advance
- Non-functional acceptance testing shouldn’t be skipped, this is as important as functional testing
- Acceptance testing can be carried out in front of the customer, i.e. witness testing
Requirements

- Functional
 - Usually relatively straightforward, e.g. pass or fail
- Non-functional
 - Less quantifiable
 - Examples:
 - Usability
 - Performance/capacity
 - Reliability
 - Fault tolerance
 - Scalability
 - Security

Acceptance Testing

- The following parameters are closely related:
 - Performance/capacity
 - Reliability
 - Fault tolerance
 - Scalability
- A series of tests needs to be executed to understand the above non-functional requirements under a range of different load conditions
- Use a series of tests as part of acceptance test rather than a single test
Concurrenty

- Load generation tools have configurable parameters that impact performance
 - Number of user threads
 - Impact concurrency and hence response times
 - Wait times
 - Impact the arrival pattern of transactions
- Define the number of concurrent threads that the acceptance test is going to be carried out with for all the test types
- How do you define the number of concurrent threads?
 - One approach is to use a Poisson distribution to predict the number of concurrent threads
 - This approach is not quite correct because it does not take into account previous arrivals

Error Handling

- Error message response times can be different from successful transaction response times
- Error message response times can skew transaction response times
- Performance test scripts should:
 - Capture errors
 - Report percentage of errors
 - Report error type – are the errors load related?
 - Report response times based on successful transactions
Caching

- Caching can skew performance test results significantly
 - Typically provide more optimistic response time measures
- Performance test scripts use parameters
 - The way these parameters are selected within the scripts can have a significant impact on the transaction response times
 - Aim to select data for parameters randomly from a large range of data

Single Transaction Type Tests

- Single transaction type tests
 - Prioritise
 - Key transactions
 - High volume
 - End user experience
- Transaction types:
 - Queries
 - Updates
 - Creates
 - Reliable messages
 - Web services
Mixed Transaction Type Tests

- Mixed transaction type tests
 - Typically, response times will be greater than single transaction types at corresponding loads
 - Measure performance metrics at different loads

Response Times vs. Load

![Graph showing mixed transaction type tests](image)
Soak Tests

- Related to availability
- Short tests may hide
 - Memory leaks
 - Stability issues
- Carry out a ‘soak test’ as part of your acceptance testing
 - Soak tests can range from 12 hours to several days and nights
 - This will also highlight other non-functional areas such as availability, resilience etc.
- Soak test workload
 - A representative work load needs to be used, e.g. a mixture of different queries, updates and creates at appropriate volume

Stress Test

- Related to performance, stability and scalability
- Tests are run at volumes significantly higher than expected
- The system should behave in a predictable way, i.e. not become unstable even if response times climb
- System response times and resource utilisation should be similar to queuing model predictions
Component Failure Tests

- Related to resilience and stability
- Tests should be carried out with failed components
- Other components should behave in a stable and predictable manner
- Issues to look for:
 - Performance coupling between components
 - Management of timeouts
 - Retry mechanisms
 - Excessive connection or session creation between interface of working components and failed components
 - Load balancing issues
Component Slow-down Tests

- Related to integration performance and stability
- When one component of a system is outsourced it is critical that it performs to expectation with the other components
- This can be carried out before system integration testing, i.e. during component testing

- Stubs can be used to represent component
- Stubs should use configurable random delays rather than fixed delays
- Issues to look for:
 - Performance coupling between components
 - Management of timeouts
 - Retry mechanisms
 - Excessive connection or session creation between interface of working components and failed components
 - Load balancing issues
Summary

- Acceptance Testing
- Single Workload Tests
- Mixed Workload Tests
- Stress Tests
- Soak Tests
- Components Failure Tests
- Component Slow-down Tests